Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender.

نویسندگان

  • Eswaraiah Varrla
  • Keith R Paton
  • Claudia Backes
  • Andrew Harvey
  • Ronan J Smith
  • Joe McCauley
  • Jonathan N Coleman
چکیده

To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml(-1) and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ∼0.15 g h(-1), much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of Graphene Oxide in suspension and powder forms by chemical exfoliation method

In this study, an efficient and facile technique for preparing graphene oxide in suspension and powder forms was presented based on a modification on Hummers' method followed by an additional ultrasonic process. The method involved the provision of graphene oxide from graphite by reaction of potassium permanganate and sulfuric acid with stabilizing the medium complex. Furthermore, this study ev...

متن کامل

Synthesis and characterization of Graphene Oxide in suspension and powder forms by chemical exfoliation method

In this study, an efficient and facile technique for preparing graphene oxide in suspension and powder forms was presented based on a modification on Hummers' method followed by an additional ultrasonic process. The method involved the provision of graphene oxide from graphite by reaction of potassium permanganate and sulfuric acid with stabilizing the medium complex. Furthermore, this study ev...

متن کامل

Synthesis of magnetic graphene-Fe3O4 nanocomposites by electrochemical exfoliation method

Superparamagnetic few-layer graphene nanocomposites (FLG- NCs) can be used for many technological applications, such as solar cells, batteries, touch panels and supercapacitors. In this work, we applied electrochemical exfoliation method as a simple, one step and economical technique to fabricate FLG- NCs. The fabricated Superparamagnetic FLG- NCs were characterized by X-ray diffraction (XRD), ...

متن کامل

Electrostatic force assisted exfoliation of prepatterned few-layer graphenes into device sites.

We present a novel fabrication method for incorporating nanometer to micrometer scale few-layer graphene (FLG) features onto substrates with electrostatic exfoliation. We pattern highly oriented pyrolytic graphite using standard lithographic techniques and subsequently, in a single step, exfoliate and transfer-print the prepatterned FLG features onto a silicon wafer using electrostatic force. W...

متن کامل

Role of Peroxide Ions in Formation of Graphene Nanosheets by Electrochemical Exfoliation of Graphite

This study demonstrates a facile, mild and environmentally-friendly sustainable (soft processing) approach for the efficient electrochemical exfoliation of graphite using a sodium hydroxide/hydrogen peroxide/water (NaOH/H2O2/H2O) system that can produce high-quality, anodic few-layer graphene nanosheets in 95% yield at ambient reaction conditions. The control experiment conducted using NaOH/H2O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 20  شماره 

صفحات  -

تاریخ انتشار 2014